2 изд., перераб. и доп. — Астана: АЛИСТ, 2024. — 448 с.: ил. — ISBN 978-601-08-4119-2.
Книга содержит около 200 задач машинного обучения, таких как загрузка и обработка текстовых или числовых данных, отбор модели и многие другие. Рассмотрена работа с языком Python, библиотеками pandas и scikit-learn. Коды примеров можно вставлять, объединять и адаптировать, создавая собственное приложение. Приведены рецепты решений с использованием: векторов, матриц и массивов; данных из CSV, JSON, SQL, баз данных, облачных хранилищ и других источников; обработки данных, текста, изображений, дат и времени; уменьшения размерности и методов выделения или отбора признаков; оценивания и отбора моделей; линейной и логистической регрессии, деревьев, лесов и k ближайших соседей; опорно-векторных машин (SVM), наивных байесовых классификаторов, кластеризации и нейронных сетей; сохранения и загрузки натренированных моделей.