CRC Press, 2008. — 565 p.
When looking at the preface of the first edition of this book published in 1999, it is observed that most of the presentation, analyses, and discussion made there are still valid. The trend of switching from analog to digital communications continues. Digital image and video, digital multimedia, Internet, and World Wide Web have been continuously and vigorously growing during the past eight years. Therefore, in this second edition of this book, we have retained most of the material of the first edition, but with some necessary updates and new additions. Two major and some minor changes made in this second edition are as follows.
First, the major parts of JPEG2000 have become standards after 1999. Hence, we have updated Chapter 8, which presents fundamental concepts and algorithms on JPEG2000. Second, a new chapter describing the recently developed video coding standard, MPEG-4 Part 10 Advanced Video Coding or H.264, has been added in the second edition as Chapter
20. For this purpose, Chapter 20 in the first edition covering the system part of MPEG, multiplexing=demultiplexing and synchronizing the coded audio, video, and other data has been changed to Chapter 21 in this new edition. Other minor changes have been made wherever necessary, including the addition of new color systems of digital video, profiles, and levels of video coding standards.
It is well known that in the 1960s the advent of the semiconductor computer and the space program swiftly brought the field of digital image processing into public focus. Since then the field has experienced rapid growth and has entered every aspect of modern technology. Since the early 1980s, digital image sequence processing has been an attractive research area because an image sequence, as a collection of images, may provide more information than a single image frame. The increased computational complexity and memory space required for image sequence processing are becoming more attainable. This is due to more advanced, achievable computational capability, resulting from the continuing progress made in technologies, especially those associated with the VLSI industry and information processing.
In addition to image and image sequence processing in the digitized domain, facsimile transmission has switched fromanalog to digital since the 1970s.However, the concept of high definition television (HDTV) when proposed in the late 1970s and early 1980s continued to be analog. This has since changed. In the United States, the first digital system proposal for HDTV appeared in 1990. The Advanced Television Standards Committee (ATSC), formed by the television industry, recommended the digital HDTV system developed jointly by the seven Grand Alliance members as the standard, which was approved by the Federal Communication Commission (FCC) in 1997. Today’s worldwide prevailing concept of HDTV is digital. The digital television (DTV) provides the signal that can be used in computers. Consequently, the marriage of TV and computers has begun. Direct broadcasting by satellite (DBS), digital video disks (DVD), video-on-demanding (VOD), video game and other digital video related media and services are now, or soon to be, available. As in the case of image and video transmission and storage, audio transmission and storage through some media have changed from analog to digital. Examples include entertainment audio on compact disks (CD) and telephone transmission over long and medium distance. Digital TV signals discussed above provide another example since they include audio signals. Transmission and storage of audio signals through some other media are about to change to digital. Examples of this include telephone transmission through local area and cable TV.
Although most signals generated from various sensors are analog in nature, the switching from analog to digital is motivated by the superiority of digital signal processing and transmission over their analog counterparts. The principal advantage of being digital is the robustness against various noises. Clearly, this results from the fact that only binary digits exist in digital format and it is much easier to distinguish one state from the other than to handle analog signals.
FundamentalsQuantization
Differential Coding
Transform Coding
Variable-Length Coding: Information Theory Results (II)
Run-Length and Dictionary Coding: Information Theory Results (III)
Still Image CompressionStill Image Coding: Standard JPEG
Wavelet Transform for Image Coding: JPEG2000
Nonstandard Still Image Coding
Motion Estimation and CompensationMotion Analysis and Motion Compensation
Block Matching
Pel Recursive Technique
Optical Flow
Further Discussion and Summary on 2-D Motion Estimation
Video CompressionFundamentals of Digital Video Coding
Digital Video Coding Standards: MPEG-1=2 Video
Application Issues of MPEG-1=2 Video Coding
MPEG-4 Video Standard: Content-Based Video Coding
ITU-T Video Coding Standards H.261 and H.263
A New Video Coding Standard: H.264=AVC
MPEG System: Video, Audio, and Data Multiplexing