Kidlington: Elsevier Science, 2000. - 296 p. - ISBN10: 0080438903 - ISBN13: 978-0080438900
"Long Term Durability of Structural Materials" features proceedings of the workshop held at Berkeley, CA in October, 2000. It brought together engineers and scientists, who have received grants from the initiative NSF 98-42, to share their results on the study of long-term durability of materials and structures.
The major objective was to develop new methods for accelerated short-term laboratory or in-situ tests which allow accurate, reliable, predictions of the long-term performance of materials, machines and structures. To achieve this goal it was important to understand the fundamental nature of the deterioration and damage processes in materials and to develop innovative ways to model the behavior of these processes as they affect the life and long-term performance of components, machines and structures.
The researchers discussed their approach to include size effects in scaling up from laboratory specimens to actual structures. Accelerated testing and durability modeling techniques developed were validated by comparing their results with performance under actual operating conditions. The main mechanism of the deterioration discussed included environmental effects and/or exposure to loads, speeds and other operating conditions that are not fully anticipated in the original design. A broad range of deterioration damage, such as fatigue, overload, ultraviolet damage, corrosion, and wear was presented.
A broad range of materials of interest was also discussed, including the full spectrum of construction materials, metals, ceramics, polymers, composites, and coatings. Emphasis was placed on scale-dependence and history of fabrication on resulting mechanical behavior of materials.
Foreword
Workshop attendees
Initiative on Long Term Durability of Materials and Structures
Structures
Approaches to Enhancing Concrete Bridge Deck Durability
Long-Term Reliability of Structural Systems
Development of an Intelligent Structural Damage Assessment System: Preliminary Results
Accelerated Testing and Modeling of Concrete Durability Subjected to Coupled Environmental and Mechanical Loading
Interface Durability of Construction Materials Externally Reinforced with FRP Composites
Corrosion
Experimental and Theoretical Study of Reinforced Concrete Corrosion Using Impedance Measurements
Corrosion and Embrittlement of High-Strength Bridge Wires
Accelerated Testing for Concrete Reinforcing Bar Corrosion Protection Systems
In-Core Leaching of Chloride for Prediction of Corrosion of Steel in Concrete
Polymeric and Composite Materials
Enviro-Mechanical Durability of Polymer Composites
Long-Term Material Characterization of a Cured In Place Plastic (CIPP) Sewer Rehabilitation Liner Material
Lifetime Prediction of Polyolefin Geosynthetics Utilizing Acceleration Tests Based on Temperature
Cyclic Loading Effects on Durability of Polymer Systems
Analysis of Physical and Chemical Deterioration of Polymeric Coatings for Structural Steel KC
Piezoelectric Actuation of Fatigue Crack Growth Along Polymer/Metal Interface
Test Methods
Accelerated Life Prediction and Testing of Structural Polymers Under Cyclic Loading
Accelerated Durability Testing of Gas Turbine Coatings Emphasizing Oxide-Metal Interfaces
Electromechanical Devices for Microscale Fatigue Testing
Fracture and Fatigue of Piezoceramics Under Mechanical and Electrical Loads
Frequency Effect on the Fatigue Life of a Chopped Fiber Composite
Accelerated Testing for the Durability of Composite Materials and Structures
A Unified Approach to Predicting Long Term Performance of Asphalt-Aggregate Mixtures
Appendix
Future Research Topics Suggested at NSF Workshop on Long Term Durability, Berkeley, October 26-27,2000
Author Index
Keyword index